Categorical Data Analysis
Categorical data analysis involves analysis of variables measured in nominal or ordinal scales or count variables. Categorical variables can be in the predictor, outcome, or both sides. Ideas for graphic tiles can be one of the typical distributions with a spike around zero and over dispersion.
- Knell G, Li Q, Pettee Gabriel K, Shuval K. Long-term weight loss and metabolic health in adults concerned with maintaining or losing weight: findings from NHANES. Mayo Clin Proc. 2018 Nov;93(11):1611-1616. doi: 10.1016/j.mayocp.2018.04.018. Epub 2018 Aug 14. PubMed PMID: 30119916; PubMed Central PMCID: PMC6526934.
- Knell G, Burkhart SO, Caze II TJ, Polousky JD, Kohl III HW, Messiah SE. Association between concussion history and factors relating to cognitive, behavioral, and emotional health among American high school athletes: a cross-sectional analysis. Am J Sports Med. 2020 Aug;48(10):2534-2543. doi: 10.1177/0363546520938776. Epub 2020 Jul 21. PubMed PMID: 32692937.
- Knell G, Durand CP, Kohl III HW, Wu IHC, Pettee Gabriel K. Prevalence and likelihood of meeting sleep, physical activity, and screen-time guidelines among US youth. JAMA Pediatr. 2019 Apr 1;173(4):387-389. doi: 10.1001/jamapediatrics.2018.4847. PubMed PMID: 30715096; PubMed Central PMCID: PMC6450269
- Huh, D., Mun, E.-Y., Walters, S. T., Zhou, Z., & Atkins, D. C. (2019). A tutorial on individual participant data meta-analysis using Bayesian multilevel modeling to estimate alcohol intervention effects across heterogeneous studies. Addictive Behaviors, 94, 162-170.
- Kim, S.-Y., Huh, D., Zhou, Z., & Mun, E.-Y. (2020). A comparison of Bayesian to maximum likelihood estimation for latent growth models in the presence of a binary outcome. International Journal of Behavioral Development, 44(5), 447-457.
- LoParco, C. R., Zhou, Z., Fairlie, A. M., Litt, D. M., Lee, C. M., & Lewis, M. A. (2021). Testing daily-level drinking and negative consequences as predictors of next-day drinking cognitions. Addictive behaviors, 122, 107042.
- von Eye, A., & Mun, E.-Y. (2013). Log-linear modeling: Concepts, interpretation, and applications. New York: Wiley.
- von Eye, A., Mair, P., & Mun, E.-Y. (2010). Advances in Configural Frequency Analysis. New York: The Guilford Press.
- von Eye, A., Mun, E.-Y., & Bogat, G. A. (2008). Temporal patterns of variable relationships in
- person-oriented research – Longitudinal models of Configural Frequency Analysis. Developmental Psychology, 44(2), 437-445.
- Zhou, Z., Li, D., & Zhang, S. (2022). Sample size calculation for cluster randomized trials with zero‐inflated count outcomes. Statistics in Medicine, 41(12), 2191-2204.
- Zhou, Z., Xie, M., Huh, D., & Mun, E. Y. (2021). A bias correction method in meta‐analysis of randomized clinical trials with no adjustments for zero‐inflated outcomes. Statistics in medicine, 40(26), 5894-5909.
Social media